3D Reconstruction of Plant Roots from MRI Images
نویسندگان
چکیده
We present a novel method for deriving a structural model of a plant root system from 3D Magnetic Resonance Imaging (MRI) data of soil grown plants. The structural model allows calculation of physiologically relevant parameters. Roughly speaking, MRI images show local water content of the investigated sample. The small, local amounts of water in roots require a relatively high resolution, which results in low SNR images. However, the spatial resolution of the MRI images remains coarse relative to the diameter of typical fine roots, causing many gaps in the visible root system. To reconstruct the root structure, we propose a three step approach: 1) detect tubular structures, 2) connect all pixels to the base of the root using Dijkstra’s algorithm, and 3) prune the tree using two signal strength related thresholds. Dijkstra’s algorithm determines the shortest path of each voxel to the base of the plant root, weighing the Euclidean distance measure by a multi-scale vesselness measure. As a result, paths running within good root candidates are preferred over paths in bare soil. We test this method using both virtually generated MRI images of Maize and real MRI images of Barley roots. In experiments on synthetic data, we show limitations of our algorithm with regard to resolution and noise levels. In addition we show how to use our reconstruction for root phenotyping on real MRI data of Barley roots in soil.
منابع مشابه
Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU
Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...
متن کاملPlant Root System Analysis from MRI Images
We present a novel method for deriving a structural model of a plant root system from 3D Magnetic Resonance Imaging (MRI) data of soil grown plants and use it for plant root system analysis. The structural model allows calculation of physiologically relevant parameters. Roughly speaking, MRI images show local water content of the investigated sample. The small, local amounts of water in roots r...
متن کامل3D Reconstruction, Modelling and Analysis of in Situ Root System Architecture
Root system architecture (RSA) plays an important role in water and nutrient uptake for plant development and growth and hence in grain yield. In situ studies of RSA root architecture will assist in the characterization of phenotypes for the purpose of identifying genotypes of cereal plants that are more stress tolerant and are producer of higher grain yield. In this paper we present a method o...
متن کاملA New Approach for Quantitative Evaluation of Reconstruction Algorithms in SPECT
ABTRACT Background: In nuclear medicine, phantoms are mainly used to evaluate the overall performance of the imaging systems and practically there is no phantom exclusively designed for the evaluation of the software performance. In this study the Hoffman brain phantom was used for quantitative evaluation of reconstruction techniques. The phantom is modified to acquire t...
متن کاملRobust image-based 3D Modeling of Root Architecture
Root system architecture (RSA) plays an important role in plant development and survival. The ability to accurately model and quantify properties of root architecture is fundamental for sustainability studies, crop improvement, and studies of plant-microbal interactions. Existing methods to model RSA either require a dense set of images or rely on 3D scanning methods for dense reconstruction. I...
متن کامل